Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cemile Daĝ, ${ }^{a}$ Hümeyra Pasaoĝlu, ${ }^{\text {a }}$ Ciĝdem Yüksektepe, ${ }^{\text {a }}{ }^{\text {* }}$ Alaaddin Cukurovali ${ }^{\text {b }}$ and Ebru Murat ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139
Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Arts and Sciences Faculty, Firat University, 23119 Elaziĝ, Turkey

Correspondence e-mail: yuksekc@yahoo.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.123$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-Chloro-2-[(4-phenylthiazol-2-yl)hydrazonomethyl]phenol: a polymorph with $Z^{\prime}=2$

The title compound, β - $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$, crystallizes with two independent molecules in the asymmetric unit, both of which show a similar twisted conformation. It is polymorphic with α $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$ [Çaliskan, Daĝ, Yüksektepe, Cukurovali \& Murat (2006). Acta Cryst. E62, o4889-o4890]; both forms crystallize in the same space group. The two independent molecules in $\beta-\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$ are linked into dimers by pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

We have recently reported the crystal structure of 4-chloro-2-[(4-phenyl-thiazol-2-yl)-hydrazonomethyl]phenol, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}$ $\mathrm{N}_{3} \mathrm{OS}$ (Çalışkan et al., 2006), which is hereafter described as the α modification of this material. We now report a second crystalline polymorph, (I), hereafter called $\beta-\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$. Both polymorphs crystallize in space group $P 2_{1} / c$; in the α form there is one independent molecule in the asymmetric unit, and in the β form there are two (Fig. 1).

(I)

The two molecules in (I) adopt similar conformations. The main backbones of both molecules are close to planar and in both cases the phenyl ring is twisted in the same sense (Table 1). The dihedral angle between the N 1 and C 1 rings is $29.13(14)^{\circ}$; the equivalent value for the N 4 and C 17 rings is 30.25 (13) ${ }^{\circ}$. In $\alpha-\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$ (Çalışkan et al., 2006) the unique molecule is almost planar.

Both molecules in (I) adopt an E geometry about the azomethine $\mathrm{C}=\mathrm{N}$ double bond, with $\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 10-\mathrm{C} 11=$ $177.8(2)^{\circ}$ and $\mathrm{N} 5-\mathrm{N} 6-\mathrm{C} 26-\mathrm{C} 27=-175.5(2)^{\circ}$. The E configuration of the double bond allows the formation of an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond in both molecules (Table 2). Adjacent molecules are then linked into dimeric pairs by the two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ bonds, resulting in an $R_{2}^{2}(8)$ loop (Bernstein et al., 1995; Yüksektepe et al., 2005). The dimers are arranged into (001) layers (Fig. 2).

Experimental

Thiosemicarbazide $(0.9113 \mathrm{~g}, 10 \mathrm{mmol})$ was added in portions to a stirred solution of 5 -chlorosalicylaldehyde ($1.5657 \mathrm{~g}, 10 \mathrm{mmol}$) in 30 ml of ethanol. Subsequently, a solution of phenacyl chloride $(1.5459 \mathrm{~g}, 10 \mathrm{mmol})$ in 20 ml of ethanol was added dropwise. After the addition of the haloketone, the temperature was kept at 323-

Received 19 September 2006
Accepted 27 October 2006

Figure 1
The asymmetric unit of (I) showing 40% displacement ellipsoids (arbitrary spheres for the H atoms). The hydrogen bonds are indicated by dashed lines.

Figure 2
The packing of (I) with H atoms omitted for clarity.

328 K for 2 h more. After cooling to room temperature the solution was made alkaline with an aqueous solution of $\mathrm{NH}_{3}(5 \%)$, and a light yellow precipitate separated. The precipitate was filtered off, washed with aqueous NH_{3} solution several times and dried in air. Diffraction quality crystals of (I) were obtained by slow evaporation of its ethanol solution. Yield 85%, m.p. 505 K. IR (cm^{-1}): $3280 \nu(\mathrm{O}-\mathrm{H})$, $3120 v(\mathrm{~N}-\mathrm{H}), 1614 \nu(\mathrm{C}=\mathrm{N}$ azomethine $), 1604 \nu(\mathrm{C}=\mathrm{N}$ thiazole $)$, $676 \nu\left(\mathrm{C}-\mathrm{S}-\mathrm{C}\right.$ thiazole). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): $\delta 6.96(s, 1 \mathrm{H}$, thiazole), 7.20-7.89 ($m, 8 \mathrm{H}$, aromatics), $8.31(s, 1 \mathrm{H}$, azomethine), $10.40(s, 1 \mathrm{H},-\mathrm{NH}-), 12.20(s, 1 \mathrm{H},-\mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR shifts $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): $\delta 125.05\left(\mathrm{C}_{1}\right), 156.41\left(\mathrm{C}_{2}\right), 119.74\left(\mathrm{C}_{3}\right), 131.57\left(\mathrm{C}_{4}\right), 123.93$ $\left(\mathrm{C}_{5}\right), 130.39\left(\mathrm{C}_{6}\right), 139.38\left(\mathrm{C}_{7}\right), 169.69\left(\mathrm{C}_{8}\right), 105.31\left(\mathrm{C}_{9}\right), 152.2\left(\mathrm{C}_{10}\right)$, $136.22\left(\mathrm{C}_{11}\right), 126.69\left(\mathrm{C}_{12}\right), 127.33\left(\mathrm{C}_{13}\right), 129.37\left(\mathrm{C}_{14}\right)$.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$
$M_{r}=329.80$
Monoclinic, $P 2_{1} / c$
$a=10.8757$ (4) \AA
$b=8.2302$ (5) A
$c=34.9645(13) \AA$
$\beta=101.144$ (3) ${ }^{\circ}$
$V=3070.6(2) \AA^{3}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.765, T_{\text {max }}=0.904$

$$
Z=8
$$

$D_{x}=1.427 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, pale yellow
$0.60 \times 0.51 \times 0.31 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.123$
$S=0.99$
5398 reflections
398 parameters
H -atom parameters constrained

36136 measured reflections 5398 independent reflections 3603 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.064$ $\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0772 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.75 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.70 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0204(13)
\end{aligned}
$$

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$29.0(3)$	$\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 23-\mathrm{N} 4$	$30.0(3)$

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2A $\cdots \mathrm{N} 4$	0.86	2.11	$2.967(3)$	171
N5-H5A 1 N1	0.86	2.11	$2.962(3)$	170
O1-H1 N 3	0.82	1.94	$2.661(2)$	146
O2-H2B $\cdots \mathrm{N} 6$	0.82	1.95	$2.661(2)$	144

All H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$, $\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$) and then treated as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Çalışkan, N., Daĝ, C., Yüksektepe, C., Cukurovali, A. \& Murat, M. (2006). Acta Cryst. E62, o4889-o4890
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Yüksektepe, C., Soylu, S., Saraçoğlu, H., Çalışkan, N., Çukurovalı, A., Yılmaz, I. \& Kazaz, C. (2005). Acta Cryst. E61, o2384-o2386.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

